Heat Release in Freely-Propagating Lean Premixed Hydrogen-Methane Mixtures

Xinfeng Gao

Center for Computational Sciences and Engineering Computational Research Division Lawrence Berkeley National Laboratory

62nd Annual Meeting of the APS Division of Fluid Dynamics November 22-24, 2009 Minneapolis, MN

Objective

- Investigate addition of methane to hydrogen to reduce thermodiffusive instability
 - Transition from cellular burning to Landau-Darrieus instability only

$$\phi_{CH_4} = 0.7$$

Flame Images of Hydrogen-Methane Flames

Simulated with adaptive low Mach number combustion algorithm¹ using 21 species and 84 reactions

A. Flame appearances (field of heat release)

B. Local "flame"-based orthogonal coordinate system

¹M. S. Day and J. B. Bell, "Numerical Simulation of Laminar Reacting Flows with Complex Chemistry", Combust. Theory Modelling 4(4) pp.535-556, 2000

Heat release structure

C. Heat release structures of lean pure H₂ and CH₄ flames

- Freely propagating H₂ flame can be viewed as many flamelets with different equivalence ratios²
- Freely-propagating CH₄ flame shows little variability with curvature

²X. Gao, M. S. Day and J. B. Bell, "Characterization of Freely Propagating Hydrogen Flames", Fall Technical Meeting of the Western States Section of the Combustion Institute, Irvine, Oct. 2009

Heat release structure

D. Heat release structures of lean H₂-CH₄ mixed flames

- extinction events
 (along "flame"
 surface) disappear as
 increasing CH₄
- weakly burning regions have essentially 1-D structure as increasing (more) CH₄
- 3. $\frac{\dot{Q}_{
 m peak,freelypropagating}}{\dot{Q}_{
 m peak,flat}}
 ightarrow 1$ as increasing f_{CH_4}

Local Burning Speeds and Curvature Effects

- F. Behavior of local burning speeds
- **①** Definitions $S_c^{loc,f} = \frac{1}{A^I(\rho Y_f)_{\text{in}}} \int_{\Omega_k} \rho \omega_f d\Omega_k \quad \frac{S_c^{loc,f}}{S_L} = 1 M_a^f f(\kappa \delta), f = \text{H}_2, \text{CH}_4$
- Observations
 - → Positive slope reflecting a negative Markstein number
 - \rightarrow Increase in the $M_a^{CH_4}$ along with an increase in f_{H_2}
 - \rightarrow Extinction of CH₄ at negative curvature in H₂/CH₄ = 0.875:0.125

Hydrogen-Methane Flame: $H_2:CH_4 = 0.875:0.125$

E. Reaction pathways of Carbon chemistry of a quasi-steady premixed H₂/CH₄ (0.875:0125) flame in regions: strong burning cell (A), cusps (B), and a flame folding region (C)

Reaction Pathways of Carbon Chemistry

- similar pathways overall
- shifts in C/C₂ pathways
- Different extinction mechanisms in "B" & "C"

Concluding Remarks:

- Heat release structures seem to follow a single parameter family curves of 1D flames for hydrogen-methane flames
- These observations will allow us to develop reduced models describing hydrogen-methane flame propagation

Related Ongoing Work:

 How the turbulent diffusion/transport (heat and mass) process competes with their molecular counterparts

